Predictive Modeling with Echo State Networks

نویسندگان

  • Michal Cernanský
  • Peter Tiño
چکیده

A lot of attention is now being focused on connectionist models known under the name “reservoir computing”. The most prominent example of these approaches is a recurrent neural network architecture called an echo state network (ESN). ESNs were successfully applied in several time series modeling tasks and according to the authors they performed exceptionally well. Multiple enhancements to standard ESN were proposed in the literature. In this paper we follow the opposite direction by suggesting several simplifications to the original ESN architecture. ESN reservoir features contractive dynamics resulting from its’ initialization with small weights. Sometimes it serves just as a simple memory of inputs and provides only negligible “extra-value” over much simple methods. We experimentally support this claim and we show that many tasks modeled by ESNs can be handled with much simple approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Echo State Gaussian Process

Echo state networks (ESNs) constitute a novel approach to recurrent neural network (RNN) training, with an RNN (the reservoir) being generated randomly, and only a readout being trained using a simple, computationally efficient algorithm. ESNs have greatly facilitated the practical application of RNNs, outperforming classical approaches on a number of benchmark tasks. In this paper, we introduc...

متن کامل

Modular Echo State Neural Networks in Time Series Prediction

Echo State neural networks (ESN), which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater predictive ability. In this paper we study the influence of the memory length on predictive abilities of Echo State neural networks. The conclusion is that Echo State neural networks with fixed memory length can h...

متن کامل

Gating Echo State Neural Networks for Time Series Forecasting

”Echo State” neural networks, which are a special case of recurrent neural networks, are studied from the viewpoint of their learning ability, with a goal to achieve their greater predictive ability. In this paper we study the influence of the memory length on predictive abilities of Echo State neural networks. The conclusion is that Echo State neural networks with fixed memory length can have ...

متن کامل

Understanding the Predictive Power of Computational Mechanics and Echo State Networks in Social Media

There is a large amount of interest in understanding users of social media in order to predict their behavior in this space. Despite this interest, user predictability in social media is not well-understood. To examine this question, we consider a network of fifteen thousand users on Twitter over a seven week period. We apply two contrasting modeling paradigms: computational mechanics and echo ...

متن کامل

Echo State Networks in Audio Processing

In this article echo state networks, a special form of recurrent neural networks, are discussed in the area of nonlinear audio signal processing. Echo state networks are a novel approach in recurrent neural networks with a very easy (linear) training algorithm. Signal processing examples in nonlinear system identification (valve distortion, clipping), inverse modeling (quality enhancement) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008